Can the development of a patient’s condition be predicted through intelligent inquiry under the e-health business mode? Sequential feature map-based disease risk prediction upon features selected from cognitive diagnosis big data
Xin Liu,
Yanju Zhou and
Wang Zongrun
International Journal of Information Management, 2020, vol. 50, issue C, 463-486
Abstract:
The data-driven mode has promoted the researches of preventive medicine. In prediction of disease risks, physicians’ clinical cognitive diagnosis data can be used for early prevention of diseases and, therefore, to reduce medical cost, to improve accessibility of medical services and to lower medical risk. However, researches involved no physicians’ cognition of patients’ conditions in intelligent inquiry under e-health business mode, offered no diagnosis big data, neglected the values of the fused text information generated by joint activities of online and offline medical data, and failed to thoroughly analyze the phenomenon of redundancy-complementarity dispersion caused by high-order information shortage from the online inquiry data-driven perspective. Besides, the risk prediction simply based on offline clinical cognitive diagnosis data undoubtedly reduces prediction precision. Importantly, relevant researches rarely considered temporal relationships of different medical events, did not conduct detailed analysis on practical problems of pattern explosion, did not offer a thought of intelligent portrayal map, and did not conduct relevant risk prediction based on the sub-maps obtained from the map. In consequence, the paper presents a disease risk prediction method with the model for redundancy-complementarity dispersion-based feature selection from physicians’ online cognitive diagnosis big data to realize features selection from the cognitive diagnosis big data of online intelligent inquiry; the obtained features were ranked intelligently for subsequent high-dimensional information shortage compensation; the compensated key feature information of the cognitive diagnosis big data was fused with offline electronic medical record (EMR) to form the virtual electronic medical record (VEMR). The formed VEMR was combined with the method of the sequential feature map for modelling, and a sequential feature map-based model for disease risk prediction was presented to obtain online users’ medical conditions. A neighborhood-based collaborative prediction model was presented for prediction of an online intelligent medical inquiry user’s possible diseases in the future and to intelligently rank the risk probabilities of the diseases. In the experiments, the online intelligent medical inquiry users’ VEMRs were used as the foundation of the simulation experiments to predict disease risks in chronic obstructive pulmonary disease (OCPD) population and rheumatic heart disease (RHD) population. The experiments demonstrated that the presented method showed relatively good metric performances in the VEMR and improved disease risk prediction.
Keywords: Cognitive diagnosis big data; Online intelligent inquiry; Sequential feature map; Disease risk prediction; Redundancy and complementarity dispersion (search for similar items in EconPapers)
Date: 2020
References: Add references at CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0268401218312647
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:ininma:v:50:y:2020:i:c:p:463-486
DOI: 10.1016/j.ijinfomgt.2019.05.006
Access Statistics for this article
International Journal of Information Management is currently edited by Yogesh K. Dwivedi
More articles in International Journal of Information Management from Elsevier
Bibliographic data for series maintained by Catherine Liu ().