Emotional Text Mining: Customer profiling in brand management
Francesca Greco and
Alessandro Polli
International Journal of Information Management, 2020, vol. 51, issue C
Abstract:
The widespread use of the Internet and the constant increase in users of social media platforms has made a large amount of textual data available. This represents a valuable source of information about the changes in people’s opinions and feelings. This paper presents the application of Emotional Text Mining (ETM) in the field of brand management. ETM is an unsupervised procedure aiming to profile social media users. It is based on a bottom-up approach to classify unstructured data for the identification of social media users’ representations and sentiments about a topic. It is a fast and simple procedure to extract meaningful information from a large collection of texts. As customer profiling is relevant for brand management, we illustrate a business application of ETM on Twitter messages concerning a well-known sportswear brand in order to show the potential of this procedure, highlighting the characteristics of Twitter user communities in terms of product preferences, representations, and sentiments.
Keywords: Emotional Text Mining; Brand management; Twitter; Network analysis; Customer profiling (search for similar items in EconPapers)
Date: 2020
References: Add references at CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0268401218313598
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:ininma:v:51:y:2020:i:c:s0268401218313598
DOI: 10.1016/j.ijinfomgt.2019.04.007
Access Statistics for this article
International Journal of Information Management is currently edited by Yogesh K. Dwivedi
More articles in International Journal of Information Management from Elsevier
Bibliographic data for series maintained by Catherine Liu ().