Social media opinion summarization using emotion cognition and convolutional neural networks
Peng Wu,
Xiaotong Li,
Si Shen and
Daqing He
International Journal of Information Management, 2020, vol. 51, issue C
Abstract:
Quickly and accurately summarizing representative opinions is a key step for assessing microblog sentiments. The Ortony-Clore-Collins (OCC) model of emotion can offer a rule-based emotion export mechanism. In this paper, we propose an OCC model and a Convolutional Neural Network (CNN) based opinion summarization method for Chinese microblogging systems. We test the proposed method using real world microblog data. We then compare the accuracy of manual sentiment annotation to the accuracy using our OCC-based sentiment classification rule library. Experimental results from analyzing three real-world microblog datasets demonstrate the efficacy of our proposed method. Our study highlights the potential of combining emotion cognition with deep learning in sentiment analysis of social media data.
Keywords: Convolutional neural network; Deep learning; Sentiment analysis; Social media; Text mining (search for similar items in EconPapers)
Date: 2020
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0268401218313690
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:ininma:v:51:y:2020:i:c:s0268401218313690
DOI: 10.1016/j.ijinfomgt.2019.07.004
Access Statistics for this article
International Journal of Information Management is currently edited by Yogesh K. Dwivedi
More articles in International Journal of Information Management from Elsevier
Bibliographic data for series maintained by Catherine Liu ().