Network text analysis: A two-way classification approach
Livia Celardo and
Martin G. Everett
International Journal of Information Management, 2020, vol. 51, issue C
Abstract:
Text clustering is a well-known method for information retrieval and numerous methods for classifying words, documents or both together have been proposed. Frequently, textual data are encoded using vector models so the corpus is transformed in to a matrix of terms by documents; using this representation text clustering generates groups of similar objects on the basis of the presence/absence of the words in the documents. An alternative way to work on texts is to represent them as a network where nodes are entities connected by the presence and distribution of the words in the documents. In this work, after summarising the state of the art of text clustering we will present a new network approach to textual data. We undertake text co-clustering using methods developed for social network analysis. Several experimental results will be presented to demonstrate the validity of the approach and the advantages of this technique compared to existing methods.
Keywords: Network text analysis; Co-clustering; Text mining (search for similar items in EconPapers)
Date: 2020
References: Add references at CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0268401218313914
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:ininma:v:51:y:2020:i:c:s0268401218313914
DOI: 10.1016/j.ijinfomgt.2019.09.005
Access Statistics for this article
International Journal of Information Management is currently edited by Yogesh K. Dwivedi
More articles in International Journal of Information Management from Elsevier
Bibliographic data for series maintained by Catherine Liu ().