Managing complex engineering projects: What can we learn from the evolving digital footprint?
Ben Hicks,
Steve Culley,
James Gopsill and
Chris Snider
International Journal of Information Management, 2020, vol. 51, issue C
Abstract:
The challenges of managing large complex engineering projects, such as those involving the design of infrastructure, aerospace and industrial systems; are widely acknowledged. While there exists a mature set of project management tools and methods, many of today's projects overrun in terms of both time and cost. Existing literature attributes these overruns to factors such as: unforeseen dependencies, a lack of understanding, late changes, poor communication, limited resource availability (inc. personnel), incomplete data and aspects of culture and planning. Fundamental to overcoming these factors belies the challenge of how management information relating to them can be provided, and done so in a cost eff ;ective manner. Motivated by this challenge, recent research has demonstrated how management information can be automatically generated from the evolving digital footprint of an engineering project, which encompasses a broad range of data types and sources. In contrast to existing work that reports the generation, verification and application of methods for generating management information, this paper reviews all the reported methods to appraise the scope of management information that can be automatically generated from the digital footprint. In so doing, the paper presents a reference model for the generation of managerial information from the digital footprint, an appraisal of 27 methods, and a critical reflection of the scope and generalisability of data-driven project management methods. Key findings from the appraisal include the role of email in providing insights into potential issues, the role of computer models in automatically eliciting process and product dependencies, and the role of project documentation in assessing project norms. The critical reflection also raises issues such as privacy, highlights the enabling technologies, and presents opportunities for new Business Intelligence tools that are based on real-time monitoring and analysis of digital footprints.
Keywords: Big Data; Project Management; Business Intelligence; Knowledge Workers (search for similar items in EconPapers)
Date: 2020
References: Add references at CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0268401219300362
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:ininma:v:51:y:2020:i:c:s0268401219300362
DOI: 10.1016/j.ijinfomgt.2019.10.001
Access Statistics for this article
International Journal of Information Management is currently edited by Yogesh K. Dwivedi
More articles in International Journal of Information Management from Elsevier
Bibliographic data for series maintained by Catherine Liu ().