EconPapers    
Economics at your fingertips  
 

Mining social influence in science and vice-versa: A topic correlation approach

Diogo Nolasco and Jonice Oliveira

International Journal of Information Management, 2020, vol. 51, issue C

Abstract: There is no doubt that scientific discoveries have always brought changes to society. New technologies help solve social problems such as transportation and education, while research brings benefits such as curing diseases and improving food production. Despite the impacts caused by science and society on each other, this relationship is rarely studied and they are often seen as different universes. Previous literature focuses only on a single domain, detecting social demands or research fronts for example, without ever crossing the results for new insights. In this work, we create a system that is able to assess the relationship between social and scholar data using the topics discussed in social networks and research topics. We use the articles as science sensors and humans as social sensors via social networks. Topic modeling algorithms are used to extract and label social subjects and research themes and then topic correlation metrics are used to create links between them if they have a significant relationship. The proposed system is based on topic modeling, labeling and correlation from heterogeneous sources, so it can be used in a variety of scenarios. We make an evaluation of the approach using a large-scale Twitter corpus combined with a PubMed article corpus. In both of them, we work with data of the Zika epidemic in the world, as this scenario provides topics and discussions on both domains. Our work was capable of discovering links between various topics of different domains, which suggests that some of the relationships can be automatically inferred by the sensors. Results can open new opportunities for forecasting social behavior, assess community interest in a scientific subject or directing research to the population welfare.

Keywords: Topic modeling; Social networks; Science networks; Topic labeling; Influence mining; Topic similarity (search for similar items in EconPapers)
Date: 2020
References: Add references at CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S026840121930043X
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:ininma:v:51:y:2020:i:c:s026840121930043x

DOI: 10.1016/j.ijinfomgt.2019.10.002

Access Statistics for this article

International Journal of Information Management is currently edited by Yogesh K. Dwivedi

More articles in International Journal of Information Management from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:ininma:v:51:y:2020:i:c:s026840121930043x