Predicting semantic preferences in a socio-semantic system with collaborative filtering: A case study
Jean-François Chartier,
Pierre Mongeau and
Johanne Saint-Charles
International Journal of Information Management, 2020, vol. 51, issue C
Abstract:
This paper proposes collaborative filtering as a means to predict semantic preferences by combining information on social ties with information on links between actors and semantics. First, the authors present an overview of the most relevant collaborative filtering approaches, showing how they work and how they differ. They then compare three different collaborative filtering algorithms using articles published by New York Times journalists from 2003 to 2005 to predict preferences, where preferences refer to journalists’ inclination to use certain words in their writing. Results show that while preference profile similarities in an actor’s neighbourhood are a good predictor of her semantic preferences, information on her social network adds little to prediction accuracy.
Keywords: Collaborative filtering; Socio-semantic system; Links prediction; Semantic preferences; Social networks; Semantic networks (search for similar items in EconPapers)
Date: 2020
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0268401219300866
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:ininma:v:51:y:2020:i:c:s0268401219300866
DOI: 10.1016/j.ijinfomgt.2019.10.005
Access Statistics for this article
International Journal of Information Management is currently edited by Yogesh K. Dwivedi
More articles in International Journal of Information Management from Elsevier
Bibliographic data for series maintained by Catherine Liu ().