Beyond user experience: What constitutes algorithmic experiences?
Donghee Shin,
Bu Zhong and
Frank A. Biocca
International Journal of Information Management, 2020, vol. 52, issue C
Abstract:
Algorithms are progressively transforming human experience, especially, the interaction with businesses, governments, education, and entertainment. As a result, people are growingly seeing the outside world, in a sense, through the lens of algorithms. Despite the importance of algorithmic experience (AX), few studies had been devoted to investigating the nature and processes through which users perceive and actualize the potential for algorithm affordance. This study proposes the Algorithm Acceptance Model to conceptualize the notion of AX as part of the analytic framework for human-algorithm interaction. It then tests how AX shapes the satisfaction with and acceptance of algorithm services. The results show that AX is inherently related to human understanding of fairness, transparency, and other conventional components of user-experience, indicating the heuristic roles of transparency and fairness regarding their underlying relations of user experience and trust. AX can influence the user perception of algorithmic systems in the context of algorithm ecology, offering useful insights into the design of human-centered algorithm systems. The findings provide initial and robust support for the proposed Algorithm Acceptance Model.
Keywords: Algorithm; Algorithmic experience; Algorithmic trust; Transparency; Fairness; User experience; Affordance (search for similar items in EconPapers)
Date: 2020
References: Add references at CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0268401219314161
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:ininma:v:52:y:2020:i:c:s0268401219314161
DOI: 10.1016/j.ijinfomgt.2019.102061
Access Statistics for this article
International Journal of Information Management is currently edited by Yogesh K. Dwivedi
More articles in International Journal of Information Management from Elsevier
Bibliographic data for series maintained by Catherine Liu ().