Efficient querying of multidimensional RDF data with aggregates: Comparing NoSQL, RDF and relational data stores
Franck Ravat,
Jiefu Song,
Olivier Teste and
Cassia Trojahn
International Journal of Information Management, 2020, vol. 54, issue C
Abstract:
This paper proposes an approach to tackle the problem of querying large volume of statistical RDF data. Our approach relies on pre-aggregation strategies to better manage the analysis of this kind of data. Specifically, we define a conceptual model to represent original RDF data with aggregates in a multidimensional structure. A set of translations rules for converting a well-known multidimensional RDF modelling vocabulary into the proposed conceptual model is then proposed. We implement the conceptual model in six different data stores: two RDF triple stores (Jena TDB and Virtuoso), one graph-oriented NoSQL database (Neo4j), one column-oriented data store (Cassandra), and two relational databases (MySQL and PostGreSQL). We compare the querying performance, with and without aggregates, in these data stores. Experimental results, on real-world datasets containing 81.92 million triplets, show that pre-aggregation allows for reducing query runtime in all data stores. Neo4j NoSQL and relational databases with aggregates outperform triple stores speeding up to 99% query runtime.
Keywords: Statistical RDF data; Graph aggregation; NoSQL; Data analytics (search for similar items in EconPapers)
Date: 2020
References: Add references at CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0268401219306097
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:ininma:v:54:y:2020:i:c:s0268401219306097
DOI: 10.1016/j.ijinfomgt.2020.102089
Access Statistics for this article
International Journal of Information Management is currently edited by Yogesh K. Dwivedi
More articles in International Journal of Information Management from Elsevier
Bibliographic data for series maintained by Catherine Liu ().