EconPapers    
Economics at your fingertips  
 

Exploring key indicators of social identity in the #MeToo era: Using discourse analysis in UGC

Ana Reyes-Menendez, Jose Ramon Saura and Stephen B. Thomas

International Journal of Information Management, 2020, vol. 54, issue C

Abstract: Recent years have been characterized by the ubiquitous use of social networks as a mean of self and social identity, which offers new opportunities for qualitative and quantitative research in social sciences. The dynamics of interactions on social platforms such as Twitter promote the development of social movements around hashtags, such as #MeToo. According to previous research, this movement has set the beginning of an era. The present study aims to determine the key indicators of social identity in the #MeToo movement in Twitter using textual analysis and sentiment analysis of user-generated content. To this end, we use a cognitive pragmatics point of view to study a corpus of 31.305 tweets. Using the methodological approaches of corpus linguistics (CL) and discourse analysis (DA), we identify keywords, topics, frequency, and n-grams or collocations to understand the social identity of the #MeToo movement. The key indicators of the social identity in the #MeToo Era are validated using association statistical measures of Log-Likelihood and Mutual Information (MI). Our results reveal the polarization of sentiments where UGC is associated with both negative and positive topics. The social identity is particularly strongly correlated with women and the workplace. Finally, regardless the industry or area, these results present a holistic approach to the social identity of #MeToo.

Keywords: User Generated Content (UGC); #MeToo; Discourse Analysis (DA); Corpus Linguistics (CL); Cognitive Pragmatics; Twitter (search for similar items in EconPapers)
Date: 2020
References: Add references at CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0268401219309016
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:ininma:v:54:y:2020:i:c:s0268401219309016

DOI: 10.1016/j.ijinfomgt.2020.102129

Access Statistics for this article

International Journal of Information Management is currently edited by Yogesh K. Dwivedi

More articles in International Journal of Information Management from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:ininma:v:54:y:2020:i:c:s0268401219309016