EconPapers    
Economics at your fingertips  
 

A big data analytics framework for detecting user-level depression from social networks

Xingwei Yang, Rhonda McEwen, Liza Robee Ong and Morteza Zihayat

International Journal of Information Management, 2020, vol. 54, issue C

Abstract: Depression is one of the most common mental health problems worldwide. The diagnosis of depression is usually done by clinicians based on mental status questionnaires and patient's self-reporting. Not only do these methods highly depend on the current mood of the patient, but also people who experience mental illness are often reluctantly seeking help. Social networks have become a popular platform for people to express their feelings and thoughts with friends and family. With the substantial amount of data in social networks, there is an opportunity to try designing novel frameworks to identify those at risk of depression. Moreover, such frameworks can provide clinicians and hospitals with deeper insights about depressive behavioral patterns, thereby improving diagnostic process. In this paper, we propose a big data analytics framework to detect depression for users of social networks. In addition to syntactic and syntax features, it focuses on pragmatic features toward modeling the intention of users. User intention represents the true motivation behind social network behaviors. Moreover, since the behaviors of user's friends in the network are believed to have an influence on the user, the framework also models the influence of friends on the user's mental states. We evaluate the performance of the proposed framework on a massive real dataset obtained from Facebook and show that the framework outperforms existing methods for diagnosing user-level depression in social networks.

Keywords: Depression detection; Social network; User intention modeling; Social influence analysis (search for similar items in EconPapers)
Date: 2020
References: Add references at CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0268401219313325
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:ininma:v:54:y:2020:i:c:s0268401219313325

DOI: 10.1016/j.ijinfomgt.2020.102141

Access Statistics for this article

International Journal of Information Management is currently edited by Yogesh K. Dwivedi

More articles in International Journal of Information Management from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:ininma:v:54:y:2020:i:c:s0268401219313325