A novel architecture to identify locations for Real Estate Investment
Sandeep Kumar E,
Viswanath Talasila and
Ramkrishna Pasumarthy
International Journal of Information Management, 2021, vol. 56, issue C
Abstract:
The identification of a favorable location for investment is a key aspect influencing the real estate market of a smart city. The number of factors that influence the identification easily runs into a few hundreds (including floor space area, crime in the locality and so on). Existing literature predominantly focuses on the analysis of price trends in a given location. This paper aims to develop a set of tools to compute an optimal location for investment, a problem which has received little attention in the literature (analysis of house price trends has received more attention). In previous work the authors proposed a machine learning approach for computing optimal locations. There are two main issues with the previous work. All real estate factors were assumed to be independent and identically distributed random variables. To address this, in the current paper we propose a network structure to derive the relational inferences between the factors. However, solving the location identification problem using only a network incurs computational burden. Hence, the machine learning layers from the previous work is combined with a network layer for computing an optimal location with proven lower computational cost. A second issue is that the computations are performed on an online database which has inherent privacy risks. The online data, user information and the algorithms can be tampered through privacy breaches. We present a privacy preservation technique to protect the algorithms, and use blockchains to secure the identity of the user. This paper presents solutions to two interesting problems in the analysis of real estate networks: a) to design tools that can identify an optimal location for investment and b) to preserve the privacy of the entire process using privacy preserving techniques and block chains.
Keywords: Time complexity; Complex network science; Machine learning; Real estate investment; Data privacy; Blockchains (search for similar items in EconPapers)
Date: 2021
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0268401219302269
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:ininma:v:56:y:2021:i:c:s0268401219302269
DOI: 10.1016/j.ijinfomgt.2019.09.008
Access Statistics for this article
International Journal of Information Management is currently edited by Yogesh K. Dwivedi
More articles in International Journal of Information Management from Elsevier
Bibliographic data for series maintained by Catherine Liu ().