Disaster City Digital Twin: A vision for integrating artificial and human intelligence for disaster management
Chao Fan,
Cheng Zhang,
Alex Yahja and
Ali Mostafavi
International Journal of Information Management, 2021, vol. 56, issue C
Abstract:
This paper presents a vision for a Disaster City Digital Twin paradigm that can: (i) enable interdisciplinary convergence in the field of crisis informatics and information and communication technology (ICT) in disaster management; (ii) integrate artificial intelligence (AI) algorithms and approaches to improve situation assessment, decision making, and coordination among various stakeholders; and (iii) enable increased visibility into network dynamics of complex disaster management and humanitarian actions. The number of humanitarian relief actions is growing due to the increased frequency of natural and man-made crises. Various streams of research across different disciplines have focused on ICT and AI solutions for enhancing disaster management processes. However, most of the existing research is fragmented without a common vision towards a converging paradigm. Recognizing this, this paper presents the Disaster City Digital Twin as a unifying paradigm. The four main components of the proposed Digital Twin paradigm include: multi-data sensing for data collection, data integration and analytics, multi-actor game-theoretic decision making, and dynamic network analysis. For each component, the current state of the art related to AI methods and approaches are examined and gaps are identified.
Keywords: Digital twin; Machine learning; Information flow; Disaster management (search for similar items in EconPapers)
Date: 2021
References: Add references at CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0268401219302956
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:ininma:v:56:y:2021:i:c:s0268401219302956
DOI: 10.1016/j.ijinfomgt.2019.102049
Access Statistics for this article
International Journal of Information Management is currently edited by Yogesh K. Dwivedi
More articles in International Journal of Information Management from Elsevier
Bibliographic data for series maintained by Catherine Liu ().