A data-driven approach to adaptive synchronization of demand and supply in omni-channel retail supply chains
Marina Meireles Pereira and
Enzo Morosini Frazzon
International Journal of Information Management, 2021, vol. 57, issue C
Abstract:
The integration of selling and fulfillment processes triggered by omni-channels is transforming the retailer’s operations management. In this context, there is a lack of research regarding the connection between digital and physical worlds in retail supply chains. This paper aims to propose a data-driven approach that combines machine-learning demand forecasting and operational planning simulation-based optimization to adaptively synchronize demand and supply in omni-channel retail supply chains. The findings are substantiated through the application of the approach in an omni-channel retail supply chain. The combination of clustering and neural networks improved demand forecast, supporting an assertive identification of demand volume and location. Simulation-based optimization allowed for the definition of which facility would serve identified demands most effectively. The approach reduced fulfillment lead time, mitigated backorders arising from incompatible product´s supply and demand, and lowered operational costs, which are key performance indicators in today’s competitive retail markets.
Keywords: Simulation-based optimization; Machine learning; Omni-channel retail supply chains; Data-driven (search for similar items in EconPapers)
Date: 2021
References: Add references at CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S026840122030205X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:ininma:v:57:y:2021:i:c:s026840122030205x
DOI: 10.1016/j.ijinfomgt.2020.102165
Access Statistics for this article
International Journal of Information Management is currently edited by Yogesh K. Dwivedi
More articles in International Journal of Information Management from Elsevier
Bibliographic data for series maintained by Catherine Liu ().