Sensitivity analysis with χ2-divergences
Vaishno Devi Makam,
Pietro Millossovich and
Andreas Tsanakas
Insurance: Mathematics and Economics, 2021, vol. 100, issue C, 372-383
Abstract:
We introduce an approach to sensitivity analysis of quantitative risk models, for the purpose of identifying the most influential inputs. The proposed approach relies on a change of measure derived by minimising the χ2-divergence, subject to a constraint (‘stress’) on the expectation of a chosen random variable. We obtain an explicit solution of this optimisation problem in a finite space, consistent with the use of simulation models in risk management. Subsequently, we introduce metrics that allow for a coherent assessment of reverse (i.e. stressing the output and monitoring inputs) and forward (i.e. stressing the inputs and monitoring the output) sensitivities. The proposed approach is easily applicable in practice, as it only requires a single set of simulated input/output scenarios. This is demonstrated by application on a simple insurance portfolio. Furthermore, via a simulation study, we compare the sampling performance of sensitivity metrics based on the χ2- and the Kullback-Leibler divergence, indicating that the former can be evaluated with lower sampling error.
Keywords: Sensitivity analysis; χ2-divergence; Kullback-Leibler divergence; Simulation; Sensitivity measures; Reverse stress testing (search for similar items in EconPapers)
JEL-codes: C15 D81 G22 (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167668721001050
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:insuma:v:100:y:2021:i:c:p:372-383
DOI: 10.1016/j.insmatheco.2021.06.007
Access Statistics for this article
Insurance: Mathematics and Economics is currently edited by R. Kaas, Hansjoerg Albrecher, M. J. Goovaerts and E. S. W. Shiu
More articles in Insurance: Mathematics and Economics from Elsevier
Bibliographic data for series maintained by Catherine Liu ().