EconPapers    
Economics at your fingertips  
 

A class of generalised hyper-elliptical distributions and their applications in computing conditional tail risk measures

Katja Ignatieva and Zinoviy Landsman

Insurance: Mathematics and Economics, 2021, vol. 101, issue PB, 437-465

Abstract: This paper introduces a new family of Generalised Hyper-Elliptical (GHE) distributions providing further generalisation of the generalised hyperbolic (GH) family of distributions, considered in Ignatieva and Landsman (2019). The GHE family is constructed by mixing an elliptical distribution with a Generalised Inverse Gaussian (GIG) distribution. We present an innovative theoretical framework where a closed form expression for the tail conditional expectation (TCE) is derived for this new family of distributions. We demonstrate that the GHE family is especially suitable for heavy-tailed insurance losses data. Our theoretical TCE results are verified for two special cases, Laplace - GIG and Student-t - GIG mixtures. Both mixtures are shown to outperform the GH distribution, providing excellent fit to univariate and multivariate insurance losses data. The TCE risk measure computed for the GHE family of distributions provides a more conservative estimator of risk in the extreme tail, addressing the main challenge faced by financial companies on how to reliably quantify the risk arising from extreme losses. Our multivariate analysis allows to quantify correlated risks by means of the GHE family: the TCE of the portfolio is decomposed into individual components, representing individual risks in the aggregate loss.

Keywords: Tail conditional expectation; Generalised Hyper-Elliptical (GHE) distributions; Conditional tail risk measures; Generalised Inverse Gaussian distribution; Portfolio allocation (search for similar items in EconPapers)
JEL-codes: C46 G11 G12 (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167668721001384
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:insuma:v:101:y:2021:i:pb:p:437-465

DOI: 10.1016/j.insmatheco.2021.08.011

Access Statistics for this article

Insurance: Mathematics and Economics is currently edited by R. Kaas, Hansjoerg Albrecher, M. J. Goovaerts and E. S. W. Shiu

More articles in Insurance: Mathematics and Economics from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:insuma:v:101:y:2021:i:pb:p:437-465