Exact credibility reference Bayesian premiums
Emilio Gómez-Déniz and
Francisco J. Vázquez-Polo
Insurance: Mathematics and Economics, 2022, vol. 105, issue C, 128-143
Abstract:
In this paper, reference analysis, the tool provided by Berger et al. (2009), is used to obtain reference Bayesian premiums, which can be helpful when the practitioner has insufficient information to elicit a prior distribution. The Bayesian premiums thus obtained are based exclusively on prior distributions built from the model generated and from the available data. This mechanism produces an objective Bayesian inference, which appears to be the same as the robust Γ-minimax inference. In an informational-theoretical sense, the prior distribution used to make the inference is less informative. These Bayesian premiums are expected to approximate those which would have been obtained using proper priors describing a vague initial state of knowledge. Useful credibility expressions are readily derived by taking classes of priors involving restrictions on moments, i.e., restrictions on the collective or prior premium when the weighted squared-error loss function is used.
Keywords: Bayesian; Credibility; Premium; Reference decision; Robustness (search for similar items in EconPapers)
JEL-codes: C10 C11 G22 (search for similar items in EconPapers)
Date: 2022
References: Add references at CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167668722000415
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:insuma:v:105:y:2022:i:c:p:128-143
DOI: 10.1016/j.insmatheco.2022.04.002
Access Statistics for this article
Insurance: Mathematics and Economics is currently edited by R. Kaas, Hansjoerg Albrecher, M. J. Goovaerts and E. S. W. Shiu
More articles in Insurance: Mathematics and Economics from Elsevier
Bibliographic data for series maintained by Catherine Liu ().