EconPapers    
Economics at your fingertips  
 

Extreme-value based estimation of the conditional tail moment with application to reinsurance rating

Yuri Goegebeur, Armelle Guillou, Tine Pedersen and Jing Qin

Insurance: Mathematics and Economics, 2022, vol. 107, issue C, 102-122

Abstract: We study the estimation of the conditional tail moment, defined for a non-negative random variable X as θβ,p=E(Xβ|X>U(1/p)), β>0, p∈(0,1), provided E(Xβ)<∞, where U denotes the tail quantile function given by U(x)=inf⁡{y:F(y)⩾1−1/x}, x>1, associated to the distribution function F of X. The focus will be on situations where p is small, i.e., smaller than 1/n, where n is the number of observations on X that is available for estimation. This situation corresponds to extrapolation outside the data range, and requires extreme value arguments to construct an appropriate estimator. The asymptotic properties of the estimator, properly normalised, are established under suitable conditions. The developed methodology is applied to estimation of the expected payment and the variance of the payment under an excess-of-loss reinsurance contract. We examine the finite sample performance of the estimators by a simulation experiment and illustrate their practical use on the Secura Belgian Re automobile claim data.

Keywords: Conditional tail moment; Pareto-type distribution; Tail index; Excess-of-loss reinsurance; Second order condition; Order statistics (search for similar items in EconPapers)
JEL-codes: C02 C10 G22 (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167668722000956
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:insuma:v:107:y:2022:i:c:p:102-122

DOI: 10.1016/j.insmatheco.2022.08.003

Access Statistics for this article

Insurance: Mathematics and Economics is currently edited by R. Kaas, Hansjoerg Albrecher, M. J. Goovaerts and E. S. W. Shiu

More articles in Insurance: Mathematics and Economics from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:insuma:v:107:y:2022:i:c:p:102-122