Maximum weighted likelihood estimator for robust heavy-tail modelling of finite mixture models
Tsz Chai Fung
Insurance: Mathematics and Economics, 2022, vol. 107, issue C, 180-198
Abstract:
Insurance claim severity data are characterized by complex distributional phenomenons, where flexible density estimation tools such as the finite mixture models (FMM) are necessary. However, maximum likelihood estimations (MLE) often produce unstable tail estimates for the FMM. Motivated by this challenge, this article presents a maximum weighted likelihood estimator (MWLE) for robust estimations of heavy-tailed FMM. Under some regularity conditions, the proposed MWLE is consistent and asymptotically normal. Since the MWLE has a probabilistic interpretation, we are able to develop two distinctive versions of the Generalized Expectation-Maximization (GEM) algorithm to estimate the MWLE parameters more efficiently and reliably than the standard gradient-based algorithms. We apply the proposed MWLE to two simulation studies and a real motor insurance dataset to demonstrate that it better extrapolates the extreme losses than the MLE, without sacrificing the flexibility of the FMM in capturing the small attritional claims.
Keywords: Generalized expectation-maximization algorithm; M-estimator; Random truncation; Regularly varying function; Multimodal distribution (search for similar items in EconPapers)
JEL-codes: C13 C18 G22 (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167668722001007
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:insuma:v:107:y:2022:i:c:p:180-198
DOI: 10.1016/j.insmatheco.2022.08.008
Access Statistics for this article
Insurance: Mathematics and Economics is currently edited by R. Kaas, Hansjoerg Albrecher, M. J. Goovaerts and E. S. W. Shiu
More articles in Insurance: Mathematics and Economics from Elsevier
Bibliographic data for series maintained by Catherine Liu ().