Cumulative Parisian ruin in finite and infinite time horizons for a renewal risk process with exponential claims
Eric C.K. Cheung and
Wei Zhu
Insurance: Mathematics and Economics, 2023, vol. 111, issue C, 84-101
Abstract:
The Parisian ruin time, which is the first time the insurer's surplus process has an excursion below level zero that exceeds a prescribed time length, has been extensively analyzed in recent years mainly in the Lévy model and its special cases. However, the cumulative Parisian ruin time, which is the first time the total time spent by the surplus process below level zero exceeds a certain time length, has been rarely considered in the literature. In this paper, we study the cumulative Parisian ruin problem in a renewal risk model with general interclaim times and exponential claims. Explicit formulas for the infinite-time cumulative Parisian ruin probability is first derived under a deterministic Parisian clock and then under an Erlang clock, where the latter case can also serve as an approximation of the former. The finite-time cumulative Parisian ruin probability is subsequently analyzed as well when the time horizon is another Erlang random variable. Our formulas are applied in various numerical examples where the interclaim times follow gamma, Weibull, or Pareto distribution. Consequently, we demonstrate that the choice of the interclaim distribution does have a significant impact on the cumulative Parisian ruin probabilities when one deviates from the exponential assumption.
Keywords: Cumulative Parisian ruin; Occupation time; Renewal risk model; Finite-time ruin probability; Erlangization (search for similar items in EconPapers)
JEL-codes: C44 G22 (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167668723000343
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:insuma:v:111:y:2023:i:c:p:84-101
DOI: 10.1016/j.insmatheco.2023.03.003
Access Statistics for this article
Insurance: Mathematics and Economics is currently edited by R. Kaas, Hansjoerg Albrecher, M. J. Goovaerts and E. S. W. Shiu
More articles in Insurance: Mathematics and Economics from Elsevier
Bibliographic data for series maintained by Catherine Liu ().