Optimal insurance design under mean-variance preference with narrow framing
Xiaoqing Liang,
Wenjun Jiang and
Yiying Zhang
Insurance: Mathematics and Economics, 2023, vol. 112, issue C, 59-79
Abstract:
In this paper, we study an optimal insurance design problem under mean-variance criterion by considering the local gain-loss utility of the net payoff of insurance, namely, narrow framing. We extend the existing results in the literature to the case where the decision maker has mean-variance preference with a constraint on the expected utility of the net payoff of insurance, where the premium is determined by the mean-variance premium principle. We first show the existence and uniqueness of the optimal solution to the main problem studied in the paper. We find that the optimal indemnity function involves a deductible provided that the safety loading imposed on the “mean part” of the premium principle is strictly positive. Our main result shows that narrow framing indeed reduces the demand for insurance. The explicit optimal indemnity functions are derived under two special local gain-loss utility functions – the quadratic utility function and the piecewise linear utility function. As a spin-off result, the Bowley solution is also derived for a Stackelberg game between the decision maker and the insurer under the quadratic local gain-loss utility function. Several numerical examples are presented to further analyze the effects of narrow framing on the optimal indemnity function as well as the interests of both parties.
Keywords: Narrow framing; Mean-variance criterion; Mean-variance premium principle; Deductible; Bowley solution (search for similar items in EconPapers)
JEL-codes: D03 D81 G22 (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167668723000574
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:insuma:v:112:y:2023:i:c:p:59-79
DOI: 10.1016/j.insmatheco.2023.06.002
Access Statistics for this article
Insurance: Mathematics and Economics is currently edited by R. Kaas, Hansjoerg Albrecher, M. J. Goovaerts and E. S. W. Shiu
More articles in Insurance: Mathematics and Economics from Elsevier
Bibliographic data for series maintained by Catherine Liu ().