EconPapers    
Economics at your fingertips  
 

Fitting Tweedie's compound Poisson model to pure premium with the EM algorithm

Guangyuan Gao

Insurance: Mathematics and Economics, 2024, vol. 114, issue C, 29-42

Abstract: We consider the situation when the number of claims is unavailable, and a Tweedie's compound Poisson model is fitted to the observed pure premium. Currently, there are two different models based on the Tweedie distribution: a single generalized linear model (GLM) for mean and a double generalized linear model (DGLM) for both mean and dispersion. Although the DGLM approach facilitates the heterogeneous dispersion, its soundness relies on the accuracy of the saddlepoint approximation, which is poor when the proportion of zero claims is large. For both models, the power variance parameter is estimated by considering the profile likelihood, which is computationally expensive. We propose a new approach to fit the Tweedie model with the EM algorithm, which is equivalent to an iteratively re-weighted Poisson-gamma model on an augmented data set. The proposed approach addresses the heterogeneous dispersion without needing the saddlepoint approximation, and the power variance parameter is estimated during the model fitting. Numerical examples show that our proposed approach is superior to the two competing models.

Keywords: Tweedie's compound Poisson model; Tweedie distribution; Exponential dispersion family; The EM algorithm; Generalized linear model (search for similar items in EconPapers)
JEL-codes: C18 G22 (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167668723000872
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:insuma:v:114:y:2024:i:c:p:29-42

DOI: 10.1016/j.insmatheco.2023.10.002

Access Statistics for this article

Insurance: Mathematics and Economics is currently edited by R. Kaas, Hansjoerg Albrecher, M. J. Goovaerts and E. S. W. Shiu

More articles in Insurance: Mathematics and Economics from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:insuma:v:114:y:2024:i:c:p:29-42