EconPapers    
Economics at your fingertips  
 

Worst-case risk with unspecified risk preferences

Haiyan Liu

Insurance: Mathematics and Economics, 2024, vol. 116, issue C, 235-248

Abstract: In this paper, we study the worst-case distortion risk measure for a given risk when information about distortion functions is partially available. We obtain the explicit forms of the worst-case distortion functions for several different sets of plausible distortion functions. When there is no concavity constraint on distortion functions, the worst-case distortion function is independent of the risk to be measured and the corresponding worst-case distortion risk measure is the weighted average of the VaR's of the risk for all decision makers. When the concavity constraint is imposed on distortion functions and the set of concave distortion functions is defined by the riskiness of one single risk, the explicit form of the worst-case distortion function is obtained, which depends the risk to be measured. When the set of concave distortion functions is defined by the riskiness of multiple risks, we reduce the infinite-dimensional optimization problem to a finite-dimensional optimization problem which can be solved numerically. Finally, we apply the worst-case risk measure to optimal decision making in reinsurance.

Keywords: Value-at-risk; Distortion risk measure; Preference robust; Concavity (search for similar items in EconPapers)
JEL-codes: C60 C61 (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167668724000386
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:insuma:v:116:y:2024:i:c:p:235-248

DOI: 10.1016/j.insmatheco.2024.03.003

Access Statistics for this article

Insurance: Mathematics and Economics is currently edited by R. Kaas, Hansjoerg Albrecher, M. J. Goovaerts and E. S. W. Shiu

More articles in Insurance: Mathematics and Economics from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:insuma:v:116:y:2024:i:c:p:235-248