Blended insurance scheme: A synergistic conventional-index insurance mixture
Jinggong Zhang
Insurance: Mathematics and Economics, 2024, vol. 119, issue C, 93-105
Abstract:
Conventional indemnity-based insurance (“conventional insurance”) and index-based insurance (“index insurance”) represent two primary insurance types, each harboring distinct advantages depending on specific circumstances. This paper proposes a novel blended insurance whose payout is a mixture of the two, to achieve enhanced risk mitigation and cost efficiency. We present the product design framework that employs a multi-output neural network (NN) model to determine both the triggering type and the index-based payout level. The proposed framework is then applied to an empirical case involving soybean production coverage in Iowa. Our results demonstrate this blended insurance could generally outperform both conventional and index insurance in enhancing policyholders' utility.
Keywords: Blended insurance; Index insurance; Machine learning; Neural networks; Basis risk; Cost efficiency (search for similar items in EconPapers)
Date: 2024
References: Add references at CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167668724000921
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:insuma:v:119:y:2024:i:c:p:93-105
DOI: 10.1016/j.insmatheco.2024.08.002
Access Statistics for this article
Insurance: Mathematics and Economics is currently edited by R. Kaas, Hansjoerg Albrecher, M. J. Goovaerts and E. S. W. Shiu
More articles in Insurance: Mathematics and Economics from Elsevier
Bibliographic data for series maintained by Catherine Liu ().