Optimal investment strategy for DC pension with mean-weighted variance-CVaR criterion under partial information
Xingchun Peng and
Liuling Luo
Insurance: Mathematics and Economics, 2025, vol. 120, issue C, 302-324
Abstract:
This paper studies an asset allocation problem of defined contribution (DC) pension with partial observation and minimum guarantee constraint. In the general framework of the financial market, the investment optimization problem under partial information is transformed into the problem under complete information by using the measure transformation approach. Then two auxiliary processes are introduced to tackle the non-self-financing property of the wealth process. With the mean-weighted variance-CVaR criterion, the optimal terminal surplus and the optimal investment strategy are derived by the martingale method. In order to obtain the concrete expression of the optimal investment strategy, we focus on a particular financial market where three kinds of assets are available, including the risk-free asset, the zero coupon bond and the stock. We assume that the return rate is modulated by a hidden Markov chain and the interest rate is described by the Vasicek model. The analytical expression of the optimal investment strategy is derived by adopting the Wonham filter theory and the Malliavin calculus. Finally, the numerical analysis related to the optimal terminal wealth, the optimal investment strategy and the values of risk measures is carried out to illustrate the theoretical results.
Keywords: DC pension; Partial information; Conditional value at risk; Martingale method; Malliavin calculus (search for similar items in EconPapers)
JEL-codes: C61 G11 G52 (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167668724001318
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:insuma:v:120:y:2025:i:c:p:302-324
DOI: 10.1016/j.insmatheco.2024.12.006
Access Statistics for this article
Insurance: Mathematics and Economics is currently edited by R. Kaas, Hansjoerg Albrecher, M. J. Goovaerts and E. S. W. Shiu
More articles in Insurance: Mathematics and Economics from Elsevier
Bibliographic data for series maintained by Catherine Liu ().