Bowley-optimal convex-loaded premium principles
Mario Ghossoub,
Bin Li and
Benxuan Shi
Insurance: Mathematics and Economics, 2025, vol. 121, issue C, 157-180
Abstract:
This paper contributes to the literature on Stackelberg equilibria (Bowley optima) in monopolistic centralized sequential-move insurance markets in several ways. We consider a class of premium principles defined as expectations of increasing and convex functions of the indemnities. We refer to these as convex-loaded premium principles. Our analysis restricts the ex ante admissible class of indemnity functions to the two most popular and practically relevant classes: the deductible indemnities and the proportional indemnities, both of which satisfy the so-called no-sabotage condition. We study Bowley optimality of premium principles within the class of convex-loaded premium principles, when the indemnity functions are either of the deductible type or of the coinsurance type. Assuming that the policyholder is a risk-averse expected-utility maximizer, while the insurer is a risk-neutral expected-profit maximizer, we find that the expected-value premium principle is Bowley optimal for proportional indemnities, while the stop-loss premium principle is Bowley optimal for deductible indemnities under a mild condition. Methodologically, we introduce a novel dual approach to characterize Bowley optima.
Keywords: Optimal premium principles; Expected-value premium principle; Stop-loss premium principle; Stackelberg equilibrium; Bowley optima; Dual approach (search for similar items in EconPapers)
JEL-codes: C61 C72 G22 (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167668725000174
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:insuma:v:121:y:2025:i:c:p:157-180
DOI: 10.1016/j.insmatheco.2025.01.006
Access Statistics for this article
Insurance: Mathematics and Economics is currently edited by R. Kaas, Hansjoerg Albrecher, M. J. Goovaerts and E. S. W. Shiu
More articles in Insurance: Mathematics and Economics from Elsevier
Bibliographic data for series maintained by Catherine Liu ().