A generalized tail mean-variance model for optimal capital allocation
Yang Yang,
Guojing Wang,
Jing Yao and
Hengyue Xie
Insurance: Mathematics and Economics, 2025, vol. 122, issue C, 157-179
Abstract:
Capital allocation is a core task in financial and actuarial risk management. Some well-known capital allocation principles, such as the “Euler principle” and the “haircut principle”, have been widely used in the banking and insurance industry. The partitions of allocated capital not only serve as a buffer against potential losses but also provide certain risk pricing and performance measurement to the underlying risks. Dhaene et al. (2012) proposed a unified distance-minimizing capital allocation framework. Their objective function in the optimization only considers the magnitude of the loss function but not the variability. In this paper, we propose a general tail mean-variance (GTMV) model, which employs the Bregman divergences to construct distance-minimizing functions, and takes both the magnitude and the variability into account. We prove the existence and uniqueness of the optimal allocation and provide the general system of equations that characterizes the optimal solution. In this context, we further introduce the Mahalanobis tail mean-variance (MTMV) model and provide explicit distribution-free optimal allocation formulas, which cover many existing results as special cases. In particular, we derive the parametric analytical solutions for multivariate generalized hyperbolic distributed risks. For multivariate log-generalized hyperbolic distributed non-negative risks, we use the convex approximation method to obtain explicit solutions. We present two numerical examples showing the good performance of our optimal capital allocation rules. The first one analyzes the market risk of S&P 500 industry sector indices. We show that our optimal capital allocation framework is applicable to various scenario analyses and provides a performance measure for the indices and the financial market. The other example is based on insurance claims from an Australian insurance company, showing our approximate formulas are both robust and accurate.
Keywords: Capital allocation; Bregman divergences; Tail mean-variance; Multivariate generalized hyperbolic distribution; Convex bound approximation (search for similar items in EconPapers)
JEL-codes: C61 G11 G32 (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S016766872500040X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:insuma:v:122:y:2025:i:c:p:157-179
DOI: 10.1016/j.insmatheco.2025.03.003
Access Statistics for this article
Insurance: Mathematics and Economics is currently edited by R. Kaas, Hansjoerg Albrecher, M. J. Goovaerts and E. S. W. Shiu
More articles in Insurance: Mathematics and Economics from Elsevier
Bibliographic data for series maintained by Catherine Liu ().