Forecasting age distribution of deaths: Cumulative distribution function transformation
Han Lin Shang and
Steven Haberman
Insurance: Mathematics and Economics, 2025, vol. 122, issue C, 249-261
Abstract:
Like density functions, period life-table death counts are nonnegative and have a constrained integral, and thus live in a constrained nonlinear space. Implementing established modelling and forecasting methods without obeying these constraints can be problematic for such nonlinear data. We introduce cumulative distribution function transformation to forecast the life-table death counts. Using the Japanese life-table death counts obtained from the Japanese Mortality Database (2024), we evaluate the point and interval forecast accuracies of the proposed approach, which compares favourably to an existing compositional data analytic approach. The improved forecast accuracy of life-table death counts is of great interest to demographers for estimating age-specific survival probabilities and life expectancy and actuaries for determining temporary annuity prices for different ages and maturities.
Keywords: Constrained functional time series; Life-table death counts; Principal component analysis; Quantile density; Single-premium temporary annuity (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167668725000447
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:insuma:v:122:y:2025:i:c:p:249-261
DOI: 10.1016/j.insmatheco.2025.03.007
Access Statistics for this article
Insurance: Mathematics and Economics is currently edited by R. Kaas, Hansjoerg Albrecher, M. J. Goovaerts and E. S. W. Shiu
More articles in Insurance: Mathematics and Economics from Elsevier
Bibliographic data for series maintained by Catherine Liu ().