Risk exchange under infinite-mean Pareto models
Yuyu Chen,
Paul Embrechts and
Ruodu Wang
Insurance: Mathematics and Economics, 2025, vol. 124, issue C
Abstract:
We study the optimal decisions and equilibria of agents who aim to minimize their risks by allocating their positions over extremely heavy-tailed (i.e., infinite-mean) and possibly dependent losses. The loss distributions of our focus are super-Pareto distributions, which include the class of extremely heavy-tailed Pareto distributions. Using a recent result on stochastic dominance, we show that for a portfolio of super-Pareto losses, non-diversification is preferred by decision makers equipped with well-defined and monotone risk measures. The phenomenon that diversification is not beneficial in the presence of super-Pareto losses is further illustrated by an equilibrium analysis in a risk exchange market. First, agents with super-Pareto losses will not share risks in a market equilibrium. Second, transferring losses from agents bearing super-Pareto losses to external parties without any losses may arrive at an equilibrium which benefits every party involved.
Keywords: Super-Pareto distributions; Diversification; Risk exchange; Equilibrium; Risk measures (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167668725000782
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:insuma:v:124:y:2025:i:c:s0167668725000782
DOI: 10.1016/j.insmatheco.2025.103131
Access Statistics for this article
Insurance: Mathematics and Economics is currently edited by R. Kaas, Hansjoerg Albrecher, M. J. Goovaerts and E. S. W. Shiu
More articles in Insurance: Mathematics and Economics from Elsevier
Bibliographic data for series maintained by Catherine Liu ().