On the distribution tail of an integrated risk model: A numerical approach
M. Brokate,
C. Klüppelberg,
R. Kostadinova,
R. Maller and
R.C. Seydel
Insurance: Mathematics and Economics, 2008, vol. 42, issue 1, 101-106
Abstract:
We consider an insurance risk process with the possibility to invest the capital reserve into a portfolio consisting of a risky asset and a riskless asset. The stock price is modelled by an exponential Lévy process and the riskless interest rate is assumed to be constant. We aim at the risk assessment of the integrated risk process in terms of a high quantile or the far out distribution tail. We indicate an application to an optimal investment strategy of an insurer.
Date: 2008
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167-6687(07)00007-8
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:insuma:v:42:y:2008:i:1:p:101-106
Access Statistics for this article
Insurance: Mathematics and Economics is currently edited by R. Kaas, Hansjoerg Albrecher, M. J. Goovaerts and E. S. W. Shiu
More articles in Insurance: Mathematics and Economics from Elsevier
Bibliographic data for series maintained by Catherine Liu ().