Stock exchange fractional dynamics defined as fractional exponential growth driven by (usual) Gaussian white noise. Application to fractional Black-Scholes equations
Guy Jumarie
Insurance: Mathematics and Economics, 2008, vol. 42, issue 1, 271-287
Abstract:
Stock exchange dynamics of fractional order are usually modeled as a non-random exponential growth process driven by a fractional Brownian motion. Here we propose to use rather a non-random fractional growth driven by a (standard) Brownian motion. The key is the Taylor's series of fractional order where E[alpha](.) denotes the Mittag-Leffler function, and is the so-called modified Riemann-Liouville fractional derivative which we introduced recently to remove the effects of the non-zero initial value of the function under consideration. Various models of fractional dynamics for stock exchange are proposed, and their solutions are obtained. Mainly, the Itô's lemma of fractional order is illustrated in the special case of a fractional growth with white noise. Prospects for the Merton's optimal portfolio are outlined, the path probability density of fractional stock exchange dynamics is obtained, and two fractional Black-Scholes equations are derived. This approach avoids using fractional Brownian motion and thus is of some help to circumvent the mathematical difficulties so involved.
Date: 2008
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (16)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167-6687(07)00034-0
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:insuma:v:42:y:2008:i:1:p:271-287
Access Statistics for this article
Insurance: Mathematics and Economics is currently edited by R. Kaas, Hansjoerg Albrecher, M. J. Goovaerts and E. S. W. Shiu
More articles in Insurance: Mathematics and Economics from Elsevier
Bibliographic data for series maintained by Catherine Liu ().