Constant dividend barrier in a risk model with interclaim-dependent claim sizes
David Landriault
Insurance: Mathematics and Economics, 2008, vol. 42, issue 1, 31-38
Abstract:
The risk model with interclaim-dependent claim sizes proposed by Boudreault et al. [Boudreault, M., Cossette, H., Landriault, D., Marceau, E., 2006. On a risk model with dependence between interclaim arrivals and claim sizes. Scand. Actur. J., 265-285] is studied in the presence of a constant dividend barrier. An integro-differential equation for some Gerber-Shiu discounted penalty functions is derived. We show that its solution can be expressed as the solution to the Gerber-Shiu discounted penalty function in the same risk model with the absence of a barrier and a combination of two linearly independent solutions to the associated homogeneous integro-differential equation. Finally, we analyze the expected present value of dividend payments before ruin in the same class of risk models. An homogeneous integro-differential equation is derived and then solved. Its solution can be expressed as a different combination of the two fundamental solutions to the homogeneous integro-differential equation associated to the Gerber-Shiu discounted penalty function.
Date: 2008
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167-6687(06)00188-0
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:insuma:v:42:y:2008:i:1:p:31-38
Access Statistics for this article
Insurance: Mathematics and Economics is currently edited by R. Kaas, Hansjoerg Albrecher, M. J. Goovaerts and E. S. W. Shiu
More articles in Insurance: Mathematics and Economics from Elsevier
Bibliographic data for series maintained by Catherine Liu ().