The role of longevity bonds in optimal portfolios
Francesco Menoncin ()
Insurance: Mathematics and Economics, 2008, vol. 42, issue 1, 343-358
Abstract:
We study the optimal consumption and portfolio for an agent maximizing the expected utility of his intertemporal consumption in a financial market with: (i) a riskless asset, (ii) a stock, (iii) a bond as a derivative on the stochastic interest rate, and (iv) a longevity bond whose coupons are proportional to the population (stochastic) survival rate. With a force of mortality instantaneously uncorrelated with the interest rate (but not necessarily independent), we demonstrate that the wealth invested in the longevity bond must be taken from the ordinary bond and the riskless asset proportionally to the duration of the two bonds. This result is valid for both a complete and an incomplete financial market.
Date: 2008
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (45)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167-6687(07)00053-4
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:insuma:v:42:y:2008:i:1:p:343-358
Access Statistics for this article
Insurance: Mathematics and Economics is currently edited by R. Kaas, Hansjoerg Albrecher, M. J. Goovaerts and E. S. W. Shiu
More articles in Insurance: Mathematics and Economics from Elsevier
Bibliographic data for series maintained by Catherine Liu ().