EconPapers    
Economics at your fingertips  
 

Mortality modelling with Lévy processes

Donatien Hainaut and Pierre Devolder

Insurance: Mathematics and Economics, 2008, vol. 42, issue 1, 409-418

Abstract: This paper addresses the modelling of human mortality by the aid of doubly stochastic processes with an intensity driven by a positive Lévy process. We focus on intensities having a mean reverting stochastic component. Furthermore, driving Lévy processes are pure jump processes belonging to the class of [alpha]-stable subordinators. In this setting, expressions of survival probabilities are inferred, the pricing is discussed and numerical applications to actuarial valuations are proposed.

Date: 2008
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (13)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167-6687(07)00063-7
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:insuma:v:42:y:2008:i:1:p:409-418

Access Statistics for this article

Insurance: Mathematics and Economics is currently edited by R. Kaas, Hansjoerg Albrecher, M. J. Goovaerts and E. S. W. Shiu

More articles in Insurance: Mathematics and Economics from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:insuma:v:42:y:2008:i:1:p:409-418