Error bounds in approximations of random sums using gamma-type operators
C. Sangüesa
Insurance: Mathematics and Economics, 2008, vol. 42, issue 2, 484-491
Abstract:
In this work we deal with approximations of compound distributions, that is, distribution functions of random sums. More specifically, we obtain a discrete compound distribution by replacing each summand in the initial random sum by a discrete random variable whose probability mass function is related to a well-known inversion formula for Laplace transforms [cf. Feller, W., 1971. An Introduction to Probability Theory and its Applications, vol. II, second edn. Wiley, New York]. Our aim is to show the advantages that this method has in the context of compound distributions. In particular we give accurate error bounds for the distance between the initial random sum and its approximation when the individual summands are mixtures of gamma distributions.
Date: 2008
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167-6687(06)00197-1
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:insuma:v:42:y:2008:i:2:p:484-491
Access Statistics for this article
Insurance: Mathematics and Economics is currently edited by R. Kaas, Hansjoerg Albrecher, M. J. Goovaerts and E. S. W. Shiu
More articles in Insurance: Mathematics and Economics from Elsevier
Bibliographic data for series maintained by Catherine Liu ().