Portfolio diversification under local and moderate deviations from power laws
Rustam Ibragimov and
Johan Walden
Insurance: Mathematics and Economics, 2008, vol. 42, issue 2, 594-599
Abstract:
This paper analyzes portfolio diversification for nonlinear transformations of heavy-tailed risks. It is shown that diversification of a portfolio of convex functions of heavy-tailed risks increases the portfolio's riskiness if expectations of these risks are infinite. In contrast, for concave functions of heavy-tailed risks with finite expectations, the stylized fact that diversification is preferable continues to hold. The framework of transformations of heavy-tailed risks includes many models with Pareto-type distributions that exhibit local or moderate deviations from power tails in the form of additional slowly varying or exponential factors. The class of distributions under study is therefore extended beyond the stable class.
Date: 2008
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (12)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167-6687(07)00073-X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:insuma:v:42:y:2008:i:2:p:594-599
Access Statistics for this article
Insurance: Mathematics and Economics is currently edited by R. Kaas, Hansjoerg Albrecher, M. J. Goovaerts and E. S. W. Shiu
More articles in Insurance: Mathematics and Economics from Elsevier
Bibliographic data for series maintained by Catherine Liu ().