Tail dependence for multivariate t -copulas and its monotonicity
Yin Chan and
Haijun Li
Insurance: Mathematics and Economics, 2008, vol. 42, issue 2, 763-770
Abstract:
The tail dependence indexes of a multivariate distribution describe the amount of dependence in the upper right tail or lower left tail of the distribution and can be used to analyse the dependence among extremal random events. This paper examines the tail dependence of multivariate t-distributions whose copulas are not explicitly accessible. The tractable formulas of tail dependence indexes of a multivariate t-distribution are derived in terms of the joint moments of its underlying multivariate normal distribution, and the monotonicity properties of these indexes with respect to the distribution parameters are established. Simulation results are presented to illustrate the results.
Date: 2008
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167-6687(07)00092-3
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:insuma:v:42:y:2008:i:2:p:763-770
Access Statistics for this article
Insurance: Mathematics and Economics is currently edited by R. Kaas, Hansjoerg Albrecher, M. J. Goovaerts and E. S. W. Shiu
More articles in Insurance: Mathematics and Economics from Elsevier
Bibliographic data for series maintained by Catherine Liu ().