EconPapers    
Economics at your fingertips  
 

Heavy-tailed longitudinal data modeling using copulas

Jiafeng Sun, Edward W. Frees and Marjorie A. Rosenberg

Insurance: Mathematics and Economics, 2008, vol. 42, issue 2, 817-830

Abstract: In this paper, we consider "heavy-tailed" data, that is, data where extreme values are likely to occur. Heavy-tailed data have been analyzed using flexible distributions such as the generalized beta of the second kind, the generalized gamma and the Burr. These distributions allow us to handle data with either positive or negative skewness, as well as heavy tails. Moreover, it has been shown that they can also accommodate cross-sectional regression models by allowing functions of explanatory variables to serve as distribution parameters. The objective of this paper is to extend this literature to accommodate longitudinal data, where one observes repeated observations of cross-sectional data. Specifically, we use copulas to model the dependencies over time, and heavy-tailed regression models to represent the marginal distributions. We also introduce model exploration techniques to help us with the initial choice of the copula and a goodness-of-fit test of elliptical copulas for model validation. In a longitudinal data context, we argue that elliptical copulas will be typically preferred to the Archimedean copulas. To illustrate our methods, Wisconsin nursing homes utilization data from 1995 to 2001 are analyzed. These data exhibit long tails and negative skewness and so help us to motivate the need for our new techniques. We find that time and the nursing home facility size as measured through the number of beds and square footage are important predictors of future utilization. Moreover, using our parametric model, we provide not only point predictions but also an entire predictive distribution.

Date: 2008
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (27)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167-6687(07)00097-2
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:insuma:v:42:y:2008:i:2:p:817-830

Access Statistics for this article

Insurance: Mathematics and Economics is currently edited by R. Kaas, Hansjoerg Albrecher, M. J. Goovaerts and E. S. W. Shiu

More articles in Insurance: Mathematics and Economics from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:insuma:v:42:y:2008:i:2:p:817-830