EconPapers    
Economics at your fingertips  
 

Comparison results for exchangeable credit risk portfolios

Areski Cousin and Jean-Paul Laurent

Insurance: Mathematics and Economics, 2008, vol. 42, issue 3, 1118-1127

Abstract: This paper is dedicated to risk analysis of credit portfolios. Assuming that default indicators form an exchangeable sequence of Bernoulli random variables and as a consequence of de Finetti's theorem, default indicators are Binomial mixtures. We can characterize the supermodular order between two exchangeable Bernoulli random vectors in terms of the convex ordering of their corresponding mixture distributions. Thus we can proceed to some comparisons between stop-loss premiums, CDO tranche premiums and convex risk measures on aggregate losses. This methodology provides a unified analysis of dependence for a number of CDO pricing models based on factor copulas, multivariate Poisson and structural approaches.

Date: 2008
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167-6687(08)00020-6
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:insuma:v:42:y:2008:i:3:p:1118-1127

Access Statistics for this article

Insurance: Mathematics and Economics is currently edited by R. Kaas, Hansjoerg Albrecher, M. J. Goovaerts and E. S. W. Shiu

More articles in Insurance: Mathematics and Economics from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:insuma:v:42:y:2008:i:3:p:1118-1127