Comparison results for exchangeable credit risk portfolios
Areski Cousin and
Jean-Paul Laurent
Insurance: Mathematics and Economics, 2008, vol. 42, issue 3, 1118-1127
Abstract:
This paper is dedicated to risk analysis of credit portfolios. Assuming that default indicators form an exchangeable sequence of Bernoulli random variables and as a consequence of de Finetti's theorem, default indicators are Binomial mixtures. We can characterize the supermodular order between two exchangeable Bernoulli random vectors in terms of the convex ordering of their corresponding mixture distributions. Thus we can proceed to some comparisons between stop-loss premiums, CDO tranche premiums and convex risk measures on aggregate losses. This methodology provides a unified analysis of dependence for a number of CDO pricing models based on factor copulas, multivariate Poisson and structural approaches.
Date: 2008
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167-6687(08)00020-6
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:insuma:v:42:y:2008:i:3:p:1118-1127
Access Statistics for this article
Insurance: Mathematics and Economics is currently edited by R. Kaas, Hansjoerg Albrecher, M. J. Goovaerts and E. S. W. Shiu
More articles in Insurance: Mathematics and Economics from Elsevier
Bibliographic data for series maintained by Catherine Liu ().