A game theoretic approach to option valuation under Markovian regime-switching models
Tak Kuen Siu
Insurance: Mathematics and Economics, 2008, vol. 42, issue 3, 1146-1158
Abstract:
In this paper, we consider a game theoretic approach to option valuation under Markovian regime-switching models, namely, a Markovian regime-switching geometric Brownian motion (GBM) and a Markovian regime-switching jump-diffusion model. In particular, we consider a stochastic differential game with two players, namely, the representative agent and the market. The representative agent has a power utility function and the market is a "fictitious" player of the game. We also explore and strengthen the connection between an equivalent martingale measure for option valuation selected by an equilibrium state of the stochastic differential game and that arising from a regime switching version of the Esscher transform. When the stock price process is governed by a Markovian regime-switching GBM, the pricing measures chosen by the two approaches coincide. When the stock price process is governed by a Markovian regime-switching jump-diffusion model, we identify the condition under which the pricing measures selected by the two approaches are identical.
Date: 2008
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (8)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167-6687(08)00023-1
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:insuma:v:42:y:2008:i:3:p:1146-1158
Access Statistics for this article
Insurance: Mathematics and Economics is currently edited by R. Kaas, Hansjoerg Albrecher, M. J. Goovaerts and E. S. W. Shiu
More articles in Insurance: Mathematics and Economics from Elsevier
Bibliographic data for series maintained by Catherine Liu ().