On a simple quasi-Monte Carlo approach for classical ultimate ruin probabilities
Ibrahim Coulibaly and
Claude Lefèvre
Insurance: Mathematics and Economics, 2008, vol. 42, issue 3, 935-942
Abstract:
This note discusses a simple quasi-Monte Carlo method to evaluate numerically the ultimate ruin probability in the classical compound Poisson risk model. The key point is the Pollaczek-Khintchine representation of the non-ruin probability as a series of convolutions. Our suggestion is to truncate the series at some appropriate level and to evaluate the remaining convolution integrals by quasi-Monte Carlo techniques. For illustration, this approximation procedure is applied when claim sizes have an exponential or generalized Pareto distribution.
Date: 2008
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167-6687(07)00129-1
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:insuma:v:42:y:2008:i:3:p:935-942
Access Statistics for this article
Insurance: Mathematics and Economics is currently edited by R. Kaas, Hansjoerg Albrecher, M. J. Goovaerts and E. S. W. Shiu
More articles in Insurance: Mathematics and Economics from Elsevier
Bibliographic data for series maintained by Catherine Liu ().