Optimal insurance under the insurer's risk constraint
Chunyang Zhou and
Chongfeng Wu
Insurance: Mathematics and Economics, 2008, vol. 42, issue 3, 992-999
Abstract:
In this paper, we impose the insurer's risk constraint on Arrow's optimal insurance model. The insured aims to maximize his/her expected utility of terminal wealth, under the constraint that the insurer wishes to control the expected loss of his/her terminal wealth below some prespecified level. We solve the problem, and it is shown that when the insurer's risk constraint is binding, the solution to the problem is not linear, but piecewise linear deductible. Moreover, it can be shown that the insured's optimal expected utility will increase if the insurer increases his/her risk tolerance.
Date: 2008
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (13)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167-6687(07)00136-9
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:insuma:v:42:y:2008:i:3:p:992-999
Access Statistics for this article
Insurance: Mathematics and Economics is currently edited by R. Kaas, Hansjoerg Albrecher, M. J. Goovaerts and E. S. W. Shiu
More articles in Insurance: Mathematics and Economics from Elsevier
Bibliographic data for series maintained by Catherine Liu ().