Optimal investment and life insurance strategies under minimum and maximum constraints
Peter Holm Nielsen and
Mogens Steffensen
Insurance: Mathematics and Economics, 2008, vol. 43, issue 1, 15-28
Abstract:
We derive optimal strategies for an individual life insurance policyholder who can control the asset allocation as well as the sum insured (the amount to be paid out upon death) throughout the policy term. We first consider the problem in a pure form without constraints (except nonnegativity on the sum insured) and then in a more general form with minimum and/or maximum constraints on the sum insured. In both cases we also provide the optimal life insurance strategies in the case where risky-asset investments are not allowed (or not taken into consideration), as in basic life insurance mathematics. The optimal constrained strategies are somewhat more complex than the unconstrained ones, but the latter can serve to ease the understanding and implementation of the former.
Date: 2008
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167-6687(07)00103-5
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:insuma:v:43:y:2008:i:1:p:15-28
Access Statistics for this article
Insurance: Mathematics and Economics is currently edited by R. Kaas, Hansjoerg Albrecher, M. J. Goovaerts and E. S. W. Shiu
More articles in Insurance: Mathematics and Economics from Elsevier
Bibliographic data for series maintained by Catherine Liu ().