EconPapers    
Economics at your fingertips  
 

Optimal reinsurance under VaR and CTE risk measures

Jun Cai, Ken Seng Tan, Chengguo Weng and Yi Zhang

Insurance: Mathematics and Economics, 2008, vol. 43, issue 1, 185-196

Abstract: Let X denote the loss initially assumed by an insurer. In a reinsurance design, the insurer cedes part of its loss, say f(X), to a reinsurer, and thus the insurer retains a loss If(X)=X-f(X). In return, the insurer is obligated to compensate the reinsurer for undertaking the risk by paying the reinsurance premium. Hence, the sum of the retained loss and the reinsurance premium can be interpreted as the total cost of managing the risk in the presence of reinsurance. Based on a technique used in [Müller, A., Stoyan, D., 2002. Comparison Methods for Stochastic Models and Risks. In: Willey Series in Probability and Statistics] and motivated by [Cai J., Tan K.S., 2007. Optimal retention for a stop-loss reinsurance under the VaR and CTE risk measure. Astin Bull. 37 (1), 93-112] on using the value-at-risk (VaR) and the conditional tail expectation (CTE) of an insurer's total cost as the criteria for determining the optimal reinsurance, this paper derives the optimal ceded loss functions in a class of increasing convex ceded loss functions. The results indicate that depending on the risk measure's level of confidence and the safety loading for the reinsurance premium, the optimal reinsurance can be in the forms of stop-loss, quota-share, or change-loss.

Date: 2008
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (76)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167-6687(08)00075-9
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:insuma:v:43:y:2008:i:1:p:185-196

Access Statistics for this article

Insurance: Mathematics and Economics is currently edited by R. Kaas, Hansjoerg Albrecher, M. J. Goovaerts and E. S. W. Shiu

More articles in Insurance: Mathematics and Economics from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:insuma:v:43:y:2008:i:1:p:185-196