Heath-Jarrow-Morton modelling of longevity bonds and the risk minimization of life insurance portfolios
Jérôme Barbarin
Insurance: Mathematics and Economics, 2008, vol. 43, issue 1, 41-55
Abstract:
This paper has two parts. In the first, we apply the Heath-Jarrow-Morton (HJM) methodology to the modelling of longevity bond prices. The idea of using the HJM methodology is not new. We can cite Cairns et al. [Cairns A.J., Blake D., Dowd K, 2006. Pricing death: framework for the valuation and the securitization of mortality risk. Astin Bull., 36 (1), 79-120], Miltersen and Persson [Miltersen K.R., Persson S.A., 2005. Is mortality dead? Stochastic force of mortality determined by arbitrage? Working Paper, University of Bergen] and Bauer [Bauer D., 2006. An arbitrage-free family of longevity bonds. Working Paper, Ulm University]. Unfortunately, none of these papers properly defines the prices of the longevity bonds they are supposed to be studying. Accordingly, the main contribution of this section is to describe a coherent theoretical setting in which we can properly define these longevity bond prices. A second objective of this section is to describe a more realistic longevity bonds market model than in previous papers. In particular, we introduce an additional effect of the actual mortality on the longevity bond prices, that does not appear in the literature. We also study multiple term structures of longevity bonds instead of the usual single term structure. In this framework, we derive a no-arbitrage condition for the longevity bond financial market. We also discuss the links between such HJM based models and the intensity models for longevity bonds such as those of Dahl [Dahl M., 2004. Stochastic mortality in life insurance: Market reserves and mortality-linked insurance contracts, Insurance: Math. Econom. 35 (1) 113-136], Biffis [Biffis E., 2005. Affine processes for dynamic mortality and actuarial valuations. Insurance: Math. Econom. 37, 443-468], Luciano and Vigna [Luciano E. and Vigna E., 2005. Non mean reverting affine processes for stochastic mortality. ICER working paper], Schrager [Schrager D.F., 2006. Affine stochastic mortality. Insurance: Math. Econom. 38, 81-97] and Hainaut and Devolder [Hainaut D., Devolder P., 2007. Mortality modelling with Lévy processes. Insurance: Math. Econom. (in press)], and suggest the standard pricing formula of these intensity models could be extended to more general settings. In the second part of this paper, we study the asset allocation problem of pure endowment and annuity portfolios. In order to solve this problem, we study the "risk-minimizing" strategies of such portfolios, when some but not all longevity bonds are available for trading. In this way, we introduce different basis risks.
Date: 2008
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (15)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167-6687(07)00105-9
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:insuma:v:43:y:2008:i:1:p:41-55
Access Statistics for this article
Insurance: Mathematics and Economics is currently edited by R. Kaas, Hansjoerg Albrecher, M. J. Goovaerts and E. S. W. Shiu
More articles in Insurance: Mathematics and Economics from Elsevier
Bibliographic data for series maintained by Catherine Liu ().