On option pricing under a completely random measure via a generalized Esscher transform
John W. Lau and
Tak Kuen Siu
Insurance: Mathematics and Economics, 2008, vol. 43, issue 1, 99-107
Abstract:
In this paper, we develop an option valuation model when the price dynamics of the underlying risky asset is governed by the exponential of a pure jump process specified by a shifted kernel-biased completely random measure. The class of kernel-biased completely random measures is a rich class of jump-type processes introduced in [James, L.F., 2005. Bayesian Poisson process partition calculus with an application to Bayesian Lévy moving averages. Ann. Statist. 33, 1771-1799; James, L.F., 2006. Poisson calculus for spatial neutral to the right processes. Ann. Statist. 34, 416-440] and it provides a great deal of flexibility to incorporate both finite and infinite jump activities. It includes a general class of processes, namely, the generalized Gamma process, which in its turn includes the stable process, the Gamma process and the inverse Gaussian process as particular cases. The kernel-biased representation is a nice representation form and can describe different types of finite and infinite jump activities by choosing different mixing kernel functions. We employ a dynamic version of the Esscher transform, which resembles an exponential change of measures or a disintegration formula based on the Laplace functional used by James, to determine an equivalent martingale measure in the incomplete market. Closed-form option pricing formulae are obtained in some parametric cases, which provide practitioners with a convenient way to evaluate option prices.
Date: 2008
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167-6687(08)00044-9
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:insuma:v:43:y:2008:i:1:p:99-107
Access Statistics for this article
Insurance: Mathematics and Economics is currently edited by R. Kaas, Hansjoerg Albrecher, M. J. Goovaerts and E. S. W. Shiu
More articles in Insurance: Mathematics and Economics from Elsevier
Bibliographic data for series maintained by Catherine Liu ().