Actuarial comparisons for aggregate claims with randomly right-truncated claims
Laureano F. Escudero and
Eva-María Ortega
Insurance: Mathematics and Economics, 2008, vol. 43, issue 2, 255-262
Abstract:
In this note, we consider an extension of the largest claims reinsurance treaty (LCR) with random upper thresholds for the claim sizes, that we call retention levels. The Laplace transform order for insurer's aggregate claims is obtained assuming dependence among the random retention levels. Different results about the influence of dependence on the insurer total claim amount are also given including the connections with LCR and the case of combination with quota-share. Algebraic bounds for the insurer aggregate claims are obtained when a common fixed threshold is considered.
Keywords: Largest; claims; reinsurance; Aggregate; claim; amount; Individual; risk; model; Dependence; Stochastic; bounds; Laplace; transform; order (search for similar items in EconPapers)
Date: 2008
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167-6687(08)00094-2
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:insuma:v:43:y:2008:i:2:p:255-262
Access Statistics for this article
Insurance: Mathematics and Economics is currently edited by R. Kaas, Hansjoerg Albrecher, M. J. Goovaerts and E. S. W. Shiu
More articles in Insurance: Mathematics and Economics from Elsevier
Bibliographic data for series maintained by Catherine Liu ().