Reinsurance under the LCR and ECOMOR treaties with emphasis on light-tailed claims
Jun Jiang and
Qihe Tang
Insurance: Mathematics and Economics, 2008, vol. 43, issue 3, 431-436
Abstract:
Suppose that, over a fixed time interval of interest, an insurance portfolio generates a random number of independent and identically distributed claims. Under the LCR treaty the reinsurance covers the first l largest claims, while under the ECOMOR treaty it covers the first l-1 largest claims in excess of the lth largest one. Assuming that the claim sizes follow an exponential distribution or a distribution with a convolution-equivalent tail, we derive some precise asymptotic estimates for the tail probabilities of the reinsured amounts under both treaties.
Keywords: Asymptotics; Convolution-equivalence; Exponential; distribution; LCR; and; ECOMOR; treaties; Reinsurance; Tail; probability (search for similar items in EconPapers)
Date: 2008
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (7)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167-6687(08)00105-4
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:insuma:v:43:y:2008:i:3:p:431-436
Access Statistics for this article
Insurance: Mathematics and Economics is currently edited by R. Kaas, Hansjoerg Albrecher, M. J. Goovaerts and E. S. W. Shiu
More articles in Insurance: Mathematics and Economics from Elsevier
Bibliographic data for series maintained by Catherine Liu ().