Analytical valuation of catastrophe equity options with negative exponential jumps
Lung-fu Chang and
Mao-wei Hung
Insurance: Mathematics and Economics, 2009, vol. 44, issue 1, 59-69
Abstract:
A catastrophe put option is valuable in the event that the underlying asset price is below the strike price; in addition, a specified catastrophic event must have happened and influenced the insured company. This paper analyzes the valuation of catastrophe put options under deterministic and stochastic interest rates when the underlying asset price is modeled through a Lévy process with finite activity. We provide explicit analytical formulas for evaluating values of catastrophe put options. The numerical examples illustrate how financial risks and catastrophic risks affect the prices of catastrophe put options.
Keywords: Catastrophe; derivatives; Lévy; process; Stochastic; interest; rate; Reinsurance; Option; pricing (search for similar items in EconPapers)
Date: 2009
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (10)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167-6687(08)00127-3
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:insuma:v:44:y:2009:i:1:p:59-69
Access Statistics for this article
Insurance: Mathematics and Economics is currently edited by R. Kaas, Hansjoerg Albrecher, M. J. Goovaerts and E. S. W. Shiu
More articles in Insurance: Mathematics and Economics from Elsevier
Bibliographic data for series maintained by Catherine Liu ().