EconPapers    
Economics at your fingertips  
 

On the discrete-time compound renewal risk model with dependence

Etienne Marceau

Insurance: Mathematics and Economics, 2009, vol. 44, issue 2, 245-259

Abstract: In this paper, we study the discrete-time renewal risk model with dependence between the claim amount random variable and the interclaim time random variable. We consider several dependence structures between the claim amount random variable and the interclaim time random variable. Recursive formulas are derived for the probability mass function and the moments of the total claim amount over a fixed period of time. In the context of ruin theory, explicit expressions for the expected penalty (Gerber-Shiu) function are derived for special cases. We also discuss how the discrete-time compound renewal risk model with dependence can be used to approximate the corresponding continuous time compound renewal risk model with dependence. Numerical examples are provided to illustrate different topics discussed in the paper.

Keywords: Dependence; Renewal; risk; model; Bivariate; distributions; Copulas; Ruin; theory; Adjustment; coefficient (search for similar items in EconPapers)
Date: 2009
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167-6687(08)00083-8
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:insuma:v:44:y:2009:i:2:p:245-259

Access Statistics for this article

Insurance: Mathematics and Economics is currently edited by R. Kaas, Hansjoerg Albrecher, M. J. Goovaerts and E. S. W. Shiu

More articles in Insurance: Mathematics and Economics from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:insuma:v:44:y:2009:i:2:p:245-259